Exercise 1

Use properties of conjugates and moduli established in Sec. 6 to show that
(a) $\overline{\bar{z}+3 i}=z-3 i$;
(b) $\overline{i z}=-i \bar{z}$;
(c) $\overline{(2+i)^{2}}=3-4 i$;
(d) $|(2 \bar{z}+5)(\sqrt{2}-i)|=\sqrt{3}|2 z+5|$.

Solution

Part (a)
Use the fact that the conjugate of a sum is the sum of the conjugates.

$$
\begin{aligned}
\overline{\bar{z}+3 i} & =\overline{\bar{z}}+\overline{3 i} \\
& =(z)+(-3 i) \\
& =z-3 i
\end{aligned}
$$

Part (b)

Use the fact that the conjugate of a product is the product of the conjugates.

$$
\begin{aligned}
\overline{i z} & =\bar{i} \bar{z} \\
& =(-i) \bar{z} \\
& =-i \bar{z}
\end{aligned}
$$

Part (c)

Use the fact that the conjugate of a product is the product of the conjugates.

$$
\begin{aligned}
\overline{(2+i)^{2}} & =\overline{(2+i)(2+i)} \\
& =\overline{2+i} \overline{2+i} \\
& =(2-i)(2-i) \\
& =4-4 i+i^{2} \\
& =3-4 i
\end{aligned}
$$

Part (d)

Use the fact that the modulus of a complex number is equal to the modulus of its conjugate.

$$
\begin{aligned}
|(2 \bar{z}+5)(\sqrt{2}-i)| & =|\overline{2 z+5} \overline{\sqrt{2}+i}| \\
& =|\overline{2 z+5}||\overline{\sqrt{2}+i}| \\
& =|2 z+5||\sqrt{2}+i| \\
& =|2 z+5| \sqrt{2+1} \\
& =\sqrt{3}|2 z+5|
\end{aligned}
$$

